Evaluation of intramitochondrial ATP levels identifies G0/G1 switch gene 2 as a positive regulator of oxidative phosphorylation.
نویسندگان
چکیده
The oxidative phosphorylation (OXPHOS) system generates most of the ATP in respiring cells. ATP-depleting conditions, such as hypoxia, trigger responses that promote ATP production. However, how OXPHOS is regulated during hypoxia has yet to be elucidated. In this study, selective measurement of intramitochondrial ATP levels identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS. A mitochondria-targeted, FRET-based ATP biosensor enabled us to assess OXPHOS activity in living cells. Mitochondria-targeted, FRET-based ATP biosensor and ATP production assay in a semiintact cell system revealed that G0s2 increases mitochondrial ATP production. The expression of G0s2 was rapidly and transiently induced by hypoxic stimuli, and G0s2 interacts with OXPHOS complex V (FoF1-ATP synthase). Furthermore, physiological enhancement of G0s2 expression prevented cells from ATP depletion and induced a cellular tolerance for hypoxic stress. These results show that G0s2 positively regulates OXPHOS activity by interacting with FoF1-ATP synthase, which causes an increase in ATP production in response to hypoxic stress and protects cells from a critical energy crisis. These findings contribute to the understanding of a unique stress response to energy depletion. Additionally, this study shows the importance of assessing intramitochondrial ATP levels to evaluate OXPHOS activity in living cells.
منابع مشابه
Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells.
Human cervical cancer HeLa cells have functional mitochondria. Recent studies have suggested that mitochondrial metabolism plays an essential role in tumor cell proliferation. Nevertheless, how cells coordinate mitochondrial dynamics and cell cycle progression remains to be clarified. To investigate the relationship between mitochondrial function and cell cycle regulation, the mitochondrial gen...
متن کاملFasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids
BACKGROUND & AIMS Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. METHODS Pl...
متن کاملMahanine, a novel mitochondrial complex-III inhibitor induces G0/G1 arrest through redox alteration-mediated DNA damage response and regresses glioblastoma multiforme.
The Electron transport chain (ETC) is responsible for oxidative phosphorylation-mediated mitochondrial respiration. Here we wanted to address the mahanine-induced targeted pathways in glioblastoma multiforme (GBM) in the context of G0/G1 phase arrest and redox alteration. We have demonstrated mahanine, as a novel mitochondrial complex-III inhibitor which induced G0/G1 phase arrest in GBM. This ...
متن کاملInhibition of oxidative phosphorylation in ascites tumor mitochondria and cells by intramitochondrial Ca2+.
Accumulation of Ca2+ (+ phosphate) by respiring mitochondria from Ehrlich ascites or AS30-D hepatoma tumor cells inhibits subsequent phosphorylating respiration in response to ADP. The respiratory chain is still functional since a proton-conducting uncoupler produces a normal stimulation of electron transport. The inhibition of phosphorylating respiration is caused by intramitochondrial Ca2+ (+...
متن کاملFbxl10 overexpression in murine hematopoietic stem cells induces leukemia involving metabolic activation and upregulation of Nsg2.
We previously reported that deficiency for Samd9L, which was cloned as a candidate gene for -7/7q- syndrome, accelerated leukemia cooperatively with enhanced expression of a histone demethylase: F-box and leucine-rich repeat protein 10 (Fbxl10, also known as Jhdm1b, Kdm2b, and Ndy1). To further investigate the role of Fbxl10 in leukemogenesis, we generated transgenic (Tg) mice that overexpress ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 1 شماره
صفحات -
تاریخ انتشار 2014